Peer-reviewed publications

  1. A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures

    K. S. Stopka, A. Desrosiers, A. Andreaco, and M. D. Sangid. A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures. Integr. Mater. Manuf. Innov., 13, 335-359 (2024)

  2. Initializing intragranular residual stresses within statistically equivalent microstructures for crystal plasticity simulations

    R. Bandyopadhyay, K. S. Stopka and M. D. Sangid. Initializing intragranular residual stresses within statistically equivalent microstructures for crystal plasticity simulations. J. Mech. Phys. Solids, 184, 105529 (2024)

  3. Modeling Fatigue Behavior of Additively Manufactured Alloys with an Emphasis on Pore Defect Morphology

    K. S. Stopka and M. D. Sangid. Modeling Fatigue Behavior of Additively Manufactured Alloys with an Emphasis on Pore Defect Morphology. J. Mech. Phys. Solids, 181, 105429 (2023)

  4. Effect of sample size on the maximum value distribution of fatigue driving forces in metals and alloys

    M. Yaghoobi, K. S. Stopka, D. L. McDowell, L. Graham-Brady, and K. Teferra. Effect of sample size on the maximum value distribution of fatigue driving forces in metals and alloys. Int. J. Fatigue, 176, 107853 (2023)

  5. Intentionally Seeding Pores in Additively Manufactured Alloy 718: Process Parameters, Microstructure, Defects, and Fatigue

    K. S. Stopka, A. Desrosiers, T. Nicodemus, N. Krutz, A. Andreaco, and M. D. Sangid. Intentionally Seeding Pores in Additively Manufactured Alloy 718: Process Parameters, Microstructure, Defects, and Fatigue. Addit. Manuf., 66, 103450 (2023)

  6. Modeling the statistical distribution of fatigue crack formation lifetime in large volumes of polycrystalline microstructures

    T. Gu, K. S. Stopka, C. Xu, and D. L. McDowell. Modeling the statistical distribution of fatigue crack formation lifetime in large volumes of polycrystalline microstructures. Acta Mater., 247, 118715 (2023)

  7. Microstructure-sensitive modeling of surface roughness and notch effects on extreme value fatigue response

    K. S. Stopka, M. Yaghoobi, J. E. Allison, and D. L. McDowell. Microstructure-sensitive modeling of surface roughness and notch effects on extreme value fatigue response. Int. J. Fatigue, 166, 107295 (2023).

  8. Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response

    A. Lakshmanan, M. Yaghoobi, K. S. Stopka, and V. Sundararaghavan. Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response. J. Mater. Res. Technol., 19, 3337-3354 (2022)

  9. Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response

    K. S. Stopka, M. Yaghoobi, J. E. Allison, and D. L. McDowell. Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response. Acta Mater., 224, 117524 (2022)

  10. Effects of boundary conditions on microstructure-sensitive fatigue crystal plasticity analysis

    K. S. Stopka, M. Yaghoobi, J. E. Allison, and D. L. McDowell. Effects of boundary conditions on microstructure-sensitive fatigue crystal plasticity analysis. Integr. Mater. Manuf. Innov., 10, 393–412 (2021)

  11. PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys

    M. Yaghoobi, K. S. Stopka, A. Lakshmanan, V. Sundararaghavan, J. E. Allison, and D. L. McDowell. PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys. npj Comput. Mater., 7, 38 (2021)

  12. Effects of algorithmic simulation parameters on the prediction of extreme value fatigue indicator parameters in duplex Ti-6Al-4V

    K. S. Stopka, T. Gu, and D. L. McDowell. Effects of algorithmic simulation parameters on the prediction of extreme value fatigue indicator parameters in duplex Ti-6Al-4V. Int. J. Fatigue, 141, 105865 (2020)

  13. Prediction of maximum fatigue indicator parameters for duplex Ti–6Al–4V using extreme value theory

    T. Gu, K. S. Stopka, C. Xu, and D. L. McDowell. Prediction of Maximum Fatigue Indicator Parameters for Duplex Ti-6Al-4V using Extreme Value Theory. Acta Mater., 188, 504-516 (2020)

  14. Microstructure-sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V

    K. S. Stopka and D. L. McDowell. Microstructure-Sensitive Computational Multiaxial Fatigue of Al 7075-T6 and Duplex Ti-6Al-4V. Int. J. Fatigue, 133, 105460 (2020)

  15. Microstructure-Sensitive Computational Estimates of Driving Forces for Surface Versus Subsurface Fatigue Crack Formation in Duplex Ti-6Al-4V and Al 7075-T6

    K. S. Stopka and D. L. McDowell. Microstructure-Sensitive Computational Estimates of Driving Forces for Surface Versus Subsurface Fatigue Crack Formation in Duplex Ti-6Al-4V and Al 7075-T6. JOM, 72, 28-38 (2020)

  16. Gaussian-process-driven adaptive sampling for reduced-order modeling of texture effects in polycrystalline alpha-Ti

    A. E. Tallman, K. S. Stopka, L. P. Swiler, Y. Wang, S. R. Kalidindi, and D. L. McDowell. Gaussian-Process-Driven Adaptive Sampling for Reduced-Order Modeling of Texture Effects in Polycrystalline Alpha-Ti. JOM, 71, 2646-2656 (2019)

Conference proceedings

  1. Structural and fatigue analysis of a rotating detonation rocket engine

    K. S. Stopka, J. Smallwood, A. Chokshi, S. D. Heister, and M. D. Sangid. Structural and fatigue analysis of a rotating detonation rocket engine. American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum (2023)

  2. Microstructure-sensitive ICME workflows for fatigue critical applications

    K. S. Stopka, G. Whelan, and D. L. McDowell. Microstructure-sensitive ICME workflows for fatigue critical applications. Society of the Advancement of Material and Process Engineering (SAMPE) (2019)

Ph.D. Thesis

Integrated computational materials engineering workflows for microstructure-sensitive fatigue of advanced alloys

K. S. Stopka. Integrated computational materials engineering workflows for microstructure-sensitive fatigue of advanced alloys. (Georgia Institute of Technology, Atlanta, 2021)